
Session 3_3. Programming basics

Table of contents

Learning Objectives . 1
Conditional expressions . 1

if-else . 1
ifelse . 2
any, all . 3

Functions . 4
For-loops . 5

Learning Objectives

• Understand three key programming concepts in R

Conditional expressions

Conditional expressions are one of the basic features of programming.

if-else

Here is a very simple example showing the general structure of an if-else statement. The basic
idea is to print the reciprocal of a unless a is 0:

a <- 0

if (a != 0) {
print(1/a)

} else {
print("No reciprocal for 0.")

}

1

[1] "No reciprocal for 0."

Let’s look at one more example using the US murders data frame, murders:

if(!"dslabs" %in% installed.packages()) {install.packages("dslabs")}
library(dslabs)
murder_rate <- murders$total / murders$population * 100000

Here is a very simple example that tells us which states, if any, have a murder rate lower than
0.5 per 100,000. The if-else statement protects us from the case in which no state satisfies the
condition.

ind <- which.min(murder_rate)

if (murder_rate[ind] < 0.5) {
print(murders$state[ind])

} else {
print("No state has murder rate that low")

}

[1] "Vermont"

If we try it again with a rate of 0.25, we get a different answer:

if (murder_rate[ind] < 0.25) {
print(murders$state[ind])

} else {
print("No state has a murder rate that low.")

}

[1] "No state has a murder rate that low."

ifelse

A related function that is very useful is ifelse. This function takes three arguments: a logical
and two possible answers. If the logical is TRUE, the value in the second argument is returned
and if FALSE, the value in the third argument is returned. Here is an example:

2

a is_a_positive answer1 answer2 result

0 FALSE Inf NA NA
1 TRUE 1.00 NA 1.0
2 TRUE 0.50 NA 0.5

-4 FALSE -0.25 NA NA
5 TRUE 0.20 NA 0.2

a <- 0
ifelse(a > 0, 1/a, NA)

[1] NA

The function is particularly useful because it works on vectors. It examines each entry of
the logical vector and returns elements from the vector provided in the second argument, if
the entry is TRUE, or elements from the vector provided in the third argument, if the entry is
FALSE.

a <- c(0, 1, 2, -4, 5)
result <- ifelse(a > 0, 1/a, NA)

This table helps us see what happened:

Here is an example of how this function can be readily used to replace all the missing values
in a vector with zeros:

no_nas <- ifelse(is.na(na_example), 0, na_example)
sum(is.na(no_nas))

[1] 0

any, all

Two other useful functions are any and all. The any function takes a vector of logicals and
returns TRUE if any of the entries is TRUE. The all function takes a vector of logicals and
returns TRUE if all of the entries are TRUE. Here is an example:

z <- c(TRUE, TRUE, FALSE)
any(z)

[1] TRUE

3

all(z)

[1] FALSE

Functions

During data analysis, you will find yourself needing to perform the same operations over and
over. For the repetitive tasks, it is much more efficient to write a function that performs
the operation. Lots of common tasks are already available as functions (e.g., there is mean()
function, so you don’t need to write one for that, sum(x)/length(x)). However, you will
encounter situations where the function does not already exist and there is a way to make
your own function! A simple version of a function that computes the average can be defined
like this:

avg <- function(x) {
s <- sum(x)
n <- length(x)
s/n

}

avg(1:10)

[1] 5.5

In general, functions are objects, so we assign them to variable names with <-. The function
function tells R you are about to define a function. The general form of a function definition
looks like this:

my_function <- function(VARIABLE_NAME) {
perform operations on VARIABLE_NAME and calculate VALUE
VALUE

}

The functions you define can have multiple arguments as well as default values.

4

For-loops

For-loop iterates over a collection of objects, such as a vector, a list, a matrix, or a data frame,
and apply the same set of operations on each item of a given data structure.

Basic for loop structure is:

for (item in list_of_items) {
do_something(item)

}

For example, we can calculate masses from volumes using a for-loop. We include print()
function to display values inside a loop or function.

Looping by values
volumes <- c(1.6, 3, 8)
for (volume in volumes) {
mass <- 2.65 * volume ^ 0.9
print(mass)

}

In the above example, we loop by values. We can also perform looping by index:

Looping by index
volumes <- c(1.6, 3, 8)
for (i in 1:length(volumes)) { # i stands for "index"

mass <- 2.65 * volumes[i] ^ 0.9
print(mass)

}

With looping by index, we can easily store the results calculated in the loop:

Store results from the loop
masses <- vector(mode = "numeric", # the type of data we are going to store

length = length(volumes)) # the length of the vector
masses

for (i in 1:length(volumes)) {
mass <- 2.65 * volumes[i] ^ 0.9
masses[i] <- mass

}
masses

5

Although for-loops are an important concept to understand, in R vectorization is preferred
over for-loops since it results in more concise, easy to read, and less error prone code. Most of
R’s functions are vectorized, meaning that the function will operate on all elements of a vector
without needing to loop through and act on each element one at a time.

Functionals

Functionals are functions that help us apply the same function to each entry in a vector,
matrix, data frame, or list. Check sapply(), apply(), and replicate().

Tip

• seq_along(x), where x is a vector, generates a vector of numbers from 1 to
length(x)

• seq_len(y), where y is a integer, generated a vector of numbers from 1 to y

Reference
http://rafalab.dfci.harvard.edu/dsbook-part-1/R/programming-basics.html
https://datacarpentry.org/semester-biology/materials/for-loops-R/

6

http://rafalab.dfci.harvard.edu/dsbook-part-1/R/programming-basics.html
https://datacarpentry.org/semester-biology/materials/for-loops-R/

	Learning Objectives
	Conditional expressions
	if-else
	ifelse
	any, all

	Functions
	For-loops

