Build a two-column word/frequency table
meshTable(
RAVmodel,
ind,
rm.noise = NULL,
weighted = TRUE,
filterMessage = TRUE
)
A PCAGenomicSignatures object
An index of RAV
An integer. Under the default (rm.noise=NULL
), if
cluster size (= s
) is smaller than 8, rm.noise = floor(s*0.5)
.
For clusters with >= 8 PCs, rm.noise = 4
. If rm.noise = 0
, all
the MeSH terms in RAV will be used to draw wordcloud.
A logical. If TRUE
, MeSH terms from each study are
weighted based on the variance explained by the principle component of the
study contributing a give RAV. Default is TRUE
.
A logical. Under the default TRUE
, any output
RAV belong to the filtering list will give a message. Silence this message
with filterMessage=FALSE
. You can check the filter list using
data("filterList")
.
A table with two columns, word
and freq
. MeSH terms in
the defined RAV (by ind
argument) is ordered based on their frequency.
data(miniRAVmodel)
meshTable(miniRAVmodel,1139)
#> RAV1139 can be filtered based on GSEA_PLIERpriors
#> word freq
#> 21 NOTCH1 protein, human 0.1242330284
#> 26 Receptor, Notch1 0.1242330284
#> 16 Leukemia, Lymphocytic, Chronic, B-Cell 0.0745398170
#> 3 CD28 Antigens 0.0656441334
#> 15 Infant 0.0468886667
#> 29 T Cell Receptor 0.0468886667
#> 22 Oncogene 0.0414110095
#> 18 Lymphocyte Activation 0.0364689630
#> 14 Indoles 0.0295148844
#> 1 B-Lymphocytes 0.0266213632
#> 19 Muromonab-CD3 0.0248496481
#> 9 DNA Methylation 0.0113179540
#> 5 Cell Cycle 0.0102568958
#> 4 CD4-Positive T-Lymphocytes 0.0091538548
#> 8 Child 0.0091172407
#> 20 Mutation 0.0082822019
#> 33 Transcriptome Profiling 0.0071352319
#> 7 Cell Proliferation 0.0065385804
#> 28 Signal Transduction 0.0064258463
#> 11 Epigenesis, Genetic 0.0063119359
#> 17 Leukemia, Myeloid, Acute 0.0056759393
#> 24 RNA, Messenger 0.0044354144
#> 30 Transcription Factors 0.0036068205
#> 6 Cell Line 0.0032408616
#> 10 Dimethyl Sulfoxide 0.0026352575
#> 12 Goals 0.0022703757
#> 34 Whole Exome Sequencing 0.0018319490
#> 25 RNA-Seq 0.0014356923
#> 31 Transcriptome 0.0013462998
#> 32 Transcriptome Analysis 0.0011295295
#> 13 Humans 0.0007936742
#> 23 RNA 0.0003967054
#> 2 Base Sequence 0.0003965369
#> 35 mRNA 0.0003601398
#> 27 Sequencing, RNA 0.0002691298