Validate new datasets
validate(
dataset,
RAVmodel,
method = "pearson",
maxFrom = "PC",
level = "max",
scale = FALSE
)
Single or a named list of SummarizedExperiment (RangedSummarizedExperiment, ExpressionSet or matrix) object(s). Gene names should be in 'symbol' format. Currently, each dataset should have at least 8 samples.
PCAGenomicSignatures object.
A character string indicating which correlation coefficient is to be computed. One of "pearson" (default), "kendall", or "spearman": can be abbreviated.
Select whether to display the maximum value from dataset's PCs
or avgLoadings. Under the default (maxFrom="PC"
), the maximum
correlation coefficient from top 8 PCs for each avgLoading will be selected
as an output. If you choose (maxFrom="avgLoading"
), the avgLoading
with the maximum correlation coefficient with each PC will be in the output.
Output format of validated result. Two options are available:
c("max", "all")
. Default is "max", which outputs the matrix containing
only the maximum coefficient. To get the coefficient of all 8 PCs, set this
argument as "all". level = "all"
can be used only for one dataset.
Default is FALSE
. If it is set to TRUE
, dataset
will be row normalized.
A data frame containing the maximum pearson correlation coefficient
between the top 8 PCs of the dataset and pre-calculated average loadings
(in row) of training datasets (score
column). It also contains other
metadata associated with each RAV: PC
for one of the top 8 PCs of the
dataset that results in the given score
, sw
for the average
silhouette width of the RAV, cl_size
for the size of each RAV.
If the input for dataset
argument is a list of different datasets,
each row of the output represents a new dataset for test, and each column
represents clusters from training datasets. If level = "all"
, a list
containing the matrices of the pearson correlation coefficient between all
top 8 PCs of the datasets and avgLoading.
data(miniRAVmodel)
library(bcellViper)
data(bcellViper)
validate(dset, miniRAVmodel)
#> score PC sw cl_size cl_num
#> RAV1076 0.5950767 2 -0.044471242 10 1076
#> RAV338 0.5709072 2 -0.046833188 21 338
#> RAV1467 0.5695904 2 -0.047094024 6 1467
#> RAV1614 0.5308258 2 -0.075672871 13 1614
#> RAV294 0.5130476 2 -0.022418144 6 294
#> RAV3071 0.5100487 2 -0.009615286 6 3071
#> RAV1694 0.5090028 2 -0.055182792 20 1694
#> RAV438 0.5088604 2 0.035822199 6 438
#> RAV725 0.4993058 2 0.094127339 20 725
#> RAV1497 0.4980072 2 0.130408751 12 1497
#> RAV501 0.4897364 2 0.064985019 7 501
#> RAV941 0.4872848 2 -0.020971183 3 941
#> RAV2538 0.5838616 2 0.069961659 4 2538
#> RAV1139 0.5622719 2 0.085369376 4 1139
#> RAV884 0.5451752 2 0.153286975 6 884
#> RAV695 0.2415454 3 0.105812565 2 695
#> RAV953 0.2145322 2 -0.004345963 3 953
#> RAV1994 0.1729988 3 -0.034939005 3 1994
#> RAV312 0.3774798 8 -0.066746154 24 312
#> RAV468 0.3989300 8 0.124024704 7 468
validate(dset, miniRAVmodel, maxFrom = "avgLoading")
#> score validated_RAV
#> PC1 0.2285693 RAV1139
#> PC2 0.5950767 RAV1076
#> PC3 0.2415454 RAV695
#> PC4 0.2282201 RAV338
#> PC5 0.2129687 RAV1139
#> PC6 0.2126171 RAV338
#> PC7 0.1762712 RAV468
#> PC8 0.3989300 RAV468